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I.  INTRODUCTION 

Following separation from the gun tube and prior to entering un- 
disturbed free flight, a projectile must traverse the muzzle blast 
field. Since this region is highly energetic, it is of interest to 
determine both the magnitude of gasdynamic forces acting on the round 
and their effect on the resultant trajectory. The development of the 
muzzle blast is obviously an unsteady phenomena; however, it has been 
demonstratedl»2 that the flow between the gun muzzle and the inward 
facing shock or Mach disc of the propellant gas jet may be treated as 
being quasi-steady* in nature. Based on this postulate, muzzle blast 
loadings upon fin-stabilized projectiles have been calculated3»4. 

3 
Gretler assumes the quasi-steady core flow is adequately 

represented as a supersonic, spherical source. Fansler and Schmidt 
improve on this solution by treating the core as an axi-symmetric, 
underexpanded jet. While this produces an estimate of the muzzle blast 
impulse which is nearly twice that predicted by Gretler, the resultant 
contribution of muzzle blast induced jump to the overall dispersion of 
typical weapons is shown to be negligible. 

Both models assume that the flow may be treated as quasi-steady, 
that body loadings may be neglected in comparison to those on fins, and 
that fin loads may be calculated using thin airfoil theory. Evaluation 
of the validity of these approximations requires comparison with 
experiment; however, detailed information on muzzle blast flow fields 

1. K.  Oswatitsch,   "Intermediate Ballistics," Deutsche Luft und 
Raumfahrt FB 64-37, December 1964.    AD 473249. 

2. E. M. Schmidt and D. D. Shear,   "The Flow Field About the Muzzle 
of an M-16 Rifle, " BRL Report No. 1692, U. S. Army Ballistic 
Research Laboratory, Aberdeen Proving Ground, MD, January 1974. 
AD 916646L. 

3. W.  Gretler,   "Intermediate Ballistics Investigations of Wing 
Stabilized Projectiles," Deutsche Luft und Raumfahrt Report 67-92, 
FSTC-HT-23-22-69-72,  1967. 

4. K. S. Fansler and E. M. Schmidt,   "The Influence of Muzzle Gas- 
dynamics upon the Trajectory of Fin-Stabilized Projectiles," 
BRL Report No,  1793,  U. S. Army Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD, June 1975.   AD B00S379L. 



and loadings on projectiles is difficult to obtain. This author5 has 
reviewed some of the experimental techniques available and concludes 
that direct measurement of loadings transmitted to projectiles in 
transit of the muzzle region is not currently feasible. Rather, 
observations of the downrange dynamics of a round should be used to 
infer properties of the launch regime. Since the effects of gasdynamic 
loadings on downrange motion may not be separated from those due to 
mechanical loadings, it is necessary to introduce artificial constraints 
which hold one source of loadings constant while systematically varying 
the other. 

This approach is taken in the present work. A muzzle device is 
designed to amplify the gasdynamic loadings experienced by a small 
caliber flechette round at launch. Two series of firings are conducted, 
one with and the other without the device attached. The resulting 
impact distributions are measured in each case. A calculation of the 
flow within the device and the loadings upon the round is performed 
using the approach of Fansler and Schmidt**. Comparison between the 
measured and predicted changes in impact distribution is used to 
establish the validity of the analysis. 

II. EXPERIMENT 

Tests are conducted using a 5.77mm smoothbore, Mann barrel firing 
the XM-645 single flechette round at a velocity of 1473 m/s. Pertinent 
physical properties of the gun and round are given in Table I. This 
system has been the subject of an intensive experimental survey" of the 
launch dynamics of flechette projectiles. Data from this study will 
be used as input to the present study. The flow at the muzzle of the 
gun is modified by the addition of a muzzle adaptor, Figure 1. 

The device is a nozzle which prohibits free expansion of the 
propellant gases. When the projectile separates from the muzzle, the 
propellant gases expand into the adaptor channel where they form a high 
pressure, high velocity stream over the projectile. A comparison of 
the centerline density variation in the free muzzle jet with the 
density distribution in the adaptor (calculated using quasi-one- 
dimensional theory), Figure 2, verifies this point. While free 
expansion in the muzzle jet brings about a rapid decay in centerline 
density, the density along the adaptor remains fixed at a relatively 
high level. 

5. E. M. Schmidt,   "The Effect of Muzzle Jet Asymmetry on Projectile 
Motion," BRL Report No.   1756,  U.S. Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, MD, January 1975.   AD B002159L- 

6. E. M. Schmidt and D. D.  Shear,   "Launch Dynamics of a Single 
Flechette Round," BRL Report 1810,  U.S. Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, MD, August 1975.   AD B006781L. 
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To examine the effect of this variation in the launch environment 
on projectile trajectory, two groups of ten rounds were fired, 
respectively, with and without the muzzle adaptor in place. Impact 
distributions into a witness card placed 25 meters from the weapon 
muzzle were obtained, Figure 3. The measured dispersions in the 
horizontal and vertical directions are summarized below: 

o    (mils)       o (mils) y z K       ' 

Without Adaptor 1.27 1.30 

With Adaptor 2.41 2.28 

The increase in dispersion due to the presence of the adaptor is 
substantial. Since the adaptor is fabricated from aluminum and is 
installed on a stiff, rigidly mounted Mann barrel, the mechanical 
loadings are assumed to be invariant between configurations, and the 
observed increase in dispersion is interpreted as arising due to 
amplification of muzzle gasdynamic loadings. In the following section, 
the flow within the adaptor, gasdynamic loadings, and resultant 
trajectory perturbations will be calculated and compared with these 
results. 

III. ANALYSIS 

A. Flow Properties Within the Muzzle Adaptor 

The conditions at the muzzle of the gun at shot ejection were 
calculated by B. Grollman? of BRL. His predictions are tabulated below: 

Y = 1.25 

R = 
2     20 

399.2 m/s    K 

V    = e 1473 m/s 

T    = 
e 

1540°K 

a    = e 877 m/s 

M    = e 1.68 

Pe = 428.6 Pto 

7.    B.  Grollman, Private Communication}  U.S. Army Ballistic Research 
Laboratory} Aberdeen Proving Ground, MD, July 1976. 



To simplify the analysis, variation in the exit properties during 
projectile residence in the adaptor will be neglected. 

g 
Using steady, quasi-one-dimensional theory , the computed exit 

conditions, and the area ratio of the device, A/A = 4.0, the flow 

properties within the adaptor may be calculated: 

M = 2.95 t (la) 

p/po = 0.114 (lb) 

a/a = 0.805  . (lc) 
6 

The relative Mach number with respect to the projectile is 

u-V      V 
M E= M --E. 
r   a      a 

= 0.863; (Id) 

thus, flow over the projectile is transonic. 

B. Projectile Loadings .and Dynamics 

4 
Following Fansler and Schmidt , transverse gasdynamic loadings 

upon the projectile are assumed to originate solely at the fins. 
Further, two-dimensional, thin airfoil theory will be used to compute 
the fin loadings under the assumptions that flow inclination, wing tip, 
and wing-body interference effects may be neglected. As a result, 
the following expression describes the transverse loadings on the 
round: 

l = lpKKT  CL a> (2) 

where c. is the lift coefficient on the fins in the reverse flow 
a 

within the muzzle adaptor, Figure (4). For the relative Mach number 

CL = 8.8. 
a 

in the adaptor, M = 0.863, 

8.    H.  W.  Liepmann and A. Eoshko, Elements of Gasdynamies, pp.  125-126, 
John Wiley <S Sons, New York,  1957. 
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The gasdynamic moment about the projectile center of gravity is 

a 
(3) 

Where the moment coefficient is related to the lift coefficient by: 

CM " CL I • 
a    a 

(4) 

A/Ä. being the separation between the projectile e.g. and the fin c.p. 
in calibers. 

Based on these loadings, the equations of motion for the projectile 
flight through the muzzle adaptor may be written: 

m [dv/dt] = i p V2 ^ CL a , 

It   [d2c</dt2]  = j p V2. ^ A CL    a    . 

(5) 

(6) 

The independent variable in these equations may be transformed by 
noting 

d Bd_dx 
dT " d£ dt 

.hi. , 
dx 

where x = x/i    , 

Thus, 

m 

V = projectile velocity. 

[dv/dx] = I p V2 AT CL ^- a  , 
a p 

(5a) 

It [d2a/dx2] = i p V2 AT A CL ±2    a 

a V 
P 

(6a) 

Since the flow properties in the adaptor are dependent only 
upon muzzle exit conditions (taken as constant) and assuming that the 
projectile axial velocity through the adaptor remains constant, 

11 



Equations (5a) and (6a) may be rewritten as 

where 

v;/Vp - n a , (7) 

a" -  m2 a = 0, (8) 

n - P Vr *T  CL £/2 mp Vp • (9) 

m2 = p V2 ^ A CL l2/2  I V2 . (10) 

2 
For constant m , Equation (8) may be solved directly: 

rax     - mx 
a = c. e  + c2 e    , (11) 

with boundary conditions at x = 0 

o- ae , 

yielding . 

/ 

c2=i(ae-li). (13) 

Substitution of Equation (11) into Equation (7) permits direct 
integration over the length of the muzzle adaptor, xf, giving 

2       "^L      '"^L   / (vL - vg)/V = (n/m ) (Cj me  J - c2 me    - a e]. (14) 

The projectile angular velocity at exit from the adaptor is obtained by 
differentiating Equation (11): 

a  - a  = c. me    - c_ me    - a  .       (15) 
L     C    X Z 6 

12 



To specify the projectile dynamics upon entry into free flight, 
it is also necessary to consider the effect of transit of the adaptor 
muzzle blast, Figure 5. The flow properties along the centerline of 
the propellant gas jet are calculated using the method of character- 
istics', Figure 6. The change in projectile dynamics is computed using 
the method of Fansler and Schmidt'*, who show: 

6 (v/V ) = (Y+l) P* A^, o^ r P    , (16) 
v m V 

P P 

/ 

8 («') - (Y+l) P* K  aT ^i- P , (17) 

t p 

where a. is given by Equation (11), 

6( ) refers to an incremental increase in the bracketted 
property due to muzzle blast loadings, 

P = / L dy , 
D 

7 .. Y  p P M*2 
v' '  a p* 

/ 
D =2D = diameter of muzzle adaptor. 

For the jet properties given in Figure 5, 

P = 0.24 . (18) 

Using the tabulated projectile and gun muzzle properties, 
Equations (11) and (14) through (18) may be used to determine the 

9.    A. R.  Vick,  et alt   "Comparison of Experimental Free-Jet Boundaries 
with Theoretical Results Obtained with the Method of Characteristics, " 
NASA TN D-2327, June 1964. NTIS N64-23032. 

13 



— 

amplification of the projectile dynamics due to transit of the adaptor 
and its muzzle blast: 

vf " VP 
-^ - = 0.056 a + 2.31 a / (19) Vp e       e 

a' -a   = 0.018 a + 0.71 a ' (20) f   e e      e 

C. Dispersion Increase Due to Muzzle Adaptor 

To compute the effec-; of the amplified muzzle gasdynamic loadings 
upon the projectile trajectory, it is necessary to know the distribution 
in initial projectile dyn imics and the impact of this upon the 
resultant flight path. F)r the XM-645 round, the distribution of 
projectile dynamics at th? muzzle was measured by Schmidt and Shear^, 
Table II.  The amplification of this dynamic state due to transit 
of the adaptor may be calculated using Equations (19) and (20). 
Finally, the resultant tiajectory perturbation is obtained by summing 
the aerodynamic-^ and trsnsverse linear momentum jumps: 

L  r v- - v 
Or - —■- -S-T (<4 - a7) + -^  . (21) 
1  C„  m r      f   e     Vp M   p r 

where CT , Cw are the lift and static moment coefficients of the L   M a   a 
projectile in forward flight. 

Substitution of kncwn projectile properties and Equations (19) and 
(20) into Equation (21]  gives 

6_ = - 0.114 a - 4.52 a „ , (22) I e        e 

where Q_ is in milliradrans for a  expressed in milliradians and 
/    l e 

a expressed in milliralians per caliber.  Using Equation (22) and 

the distribution in a and a , Table II, the increase in dispersion e    e 

10.    C. R. Murphy,   "Fxee Flight Motion of Symmetric Missiles," 
BEL Report 1216, U.S. Army Ballistic Research Laboratory, Aberdeen 
Proving Ground, JtD, July 1963.    AD 442757. 
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due to presence of the muzzle adaptor is computed to be 

La    = 0.4, 
y 

Ao » 0.9. z 

A comparison of the predicted and measured results is given in 
Figure 7. 

Considering the simplistic nature of the theoretical analysis and 
the crude nature of the experimental data, the comparison in Figure 7 
is reasonably good. It demonstrates that the interpretation of the 
physical gasdynamics and the resultant loadings upon the projectile 
are within a better than order of magnitude agreement with the actual 
phenomena. Possible sources of error include data sample size, 
difficulties in predicting the flow properties both at the weapon 
muzzlell and within the adaptor (especially with transonic relative 
flow over the projectile), and the lack of treatment of sabot discard 
interactions. 

IV.  CONCLUSIONS 

An experimental program was conducted which clearly demonstrates 
the possibility of amplification of muzzle gasdynamic loadings due to 
the presence of muzzle devices. By installing a muzzle adaptor with 
a length of 25 calibers and an inside diameter of two calibers (a 
geometry quite similar to that of a number of small arms muzzle 
devices, e.g., silencers), the round-to-round dispersion pattern of a 
5.8mm flechette was increased from 1.25 milliradians to 2.25 milli- 
radians. This one milliradian increase in dispersion is interpreted 
as arising solely due to increased propellant gasdynamic loadings 
upon the projectile during transit of the muzzle adaptor. 

A theoretical analysis of these loadings is conducted using the 
approach of Fansler and Schmidt'*. The predicted values of dispersion 
amplification are shown to agree reasonably well with the data. This 
is taken as a validation of the general correctness of the analytical 
approach. 

11.    E. M. Schmidt, E. J.  Gion, and D. D. Shear,   "Acoustic Thermometric 
Measurements of Propellant Gas Temperatures in Guns," BRL 
Report 1919,  U.S. Army Ballistic Research Laboratory, Aberdeen 
Proving Ground, MD, August 1976.    (AD #A030359) 
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Projectile Properties: 

-4 m = 6.8 x 10  kg 
P 

-10    2 
I = 3.2 x 10 1U kg-in 
3. 

It = 7.1 x 10'
8 kg-m2 

£ = 1.8 x 10"3 m 

A = 1.78 x 10'2 m 

n = 4 

A = 1.0 x 10"5 m2 

Aj, = nA/2 « 2.0 x 10"5 m2 

CL = 15 
a 

~CM    -  -50 
a 

Weapon Properties: 

Smoothbore 

D = 5.77 x 10~3 m 

L = 0.495 m  (overall) 
_3 

m = 1.361 x 10  kg (ball powder) 

V = 1.089 x 10"6 m3 c 

V = 1473 m/s 

TABLE I: PROPERTIES OF PROJECTILE AND WEAPON 

16 



ANGLE OF ATTACK ANGLE OF SIDESLIP 

ROUND 

1 

2 

3 

4 

5 

b 

7 

8 

ae(mr) a (mr/cal) e \  (mr) # (mr/c 

-7.42 -0.121 +2.46 -0.156 

-0.56 -0.005 +1.95 -0.138 

-1.84 -0.089 -3.74 +0.041 

-0.40 +0.015 -0.44 +0.114 

-1.30 -0.133 -0.03 -0.076 

+3.99 +0.151 +1.90 -0.034 

-0.68 -0.125 +3.72 -0.276 

+3.64 +0.109 -4.50 +0.098 

TABLE II: DISTRIBUTION IN LAUNCH ANGLE AND ANGULAR VELOCITY6 
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Figure 2.    Comparison of Density Distribution Along 
Centerline of Adaptor and Free Jet, Both 
Expanding from Identical Exit Conditions. 
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■ 

Figure 5. Spark Shadowgraphs of Muzzle Blast 
from Weapon Equipped with Muzzle Adaptor. 
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LIST OF SYMBOLS 

a speed of sound 

A- equivalent fin area 

C.  , CM       lift and moment coefficients of fins in reverse fXow 
o a 

C.  , CM       lift and moment coefficients of projectile in forward 
La a      flight 

D gun tube diameter 

D7 muzzle adaptor diameter (D7 = 2D) 

1,1 axial and transverse moments of inertia of projectile 
a t 

A projectile (shaft) diameter 

L lift 

L non-dimensional lift 

m coefficient defined in Equation (10) 

m projectile mass 
P 
M Mach number 

M Mach number of reverse flow relative to projectiles r 

M. overturning moment 

n coefficient defined in Equation (9) 

p pressure 

P momentum transfer function 

R gas constant 

t time 

u axial flow velocity 

V transverse projectile velocity 

V projectile launch velocity 
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x,y,z coordinate system: x directed downrange, y directed 
vertically downward, and z directed according to 
right hand rule. 

a,$ angles of attack and sideslip 

Y ratio of specific heats 

A c.p. - e.g. separation 

8L total jump due to muzzle blast effects 

p local flow density 

a. one standard deviation in i 

Subscripts 

e muzzle exit conditions 

r relative flow conditions 

00 ambient conditions 

Superscripts 

C )' spatial rate of change of property 
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